If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+10x-54=0
a = 3; b = 10; c = -54;
Δ = b2-4ac
Δ = 102-4·3·(-54)
Δ = 748
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{748}=\sqrt{4*187}=\sqrt{4}*\sqrt{187}=2\sqrt{187}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{187}}{2*3}=\frac{-10-2\sqrt{187}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{187}}{2*3}=\frac{-10+2\sqrt{187}}{6} $
| 15+7t=85 | | 82=4f+6 | | 3(y-9)-1=-5(-4y+2)-5y | | 20+3b=11 | | t/3+63=73 | | b/3+15=19 | | X2+y2-8y-10y+40=0 | | 2x+90=200 | | x=72/8x2 | | 2d-4=10 | | -16x^2-4.5x+3=0 | | k/5.2+81=47.2 | | S=40-(1.2*d) | | 11-2(8+3p)=40 | | 6x+12-5=-1x+1+5x | | 3b^2-4=284 | | 5=x-25 | | 8520.3952=158523.58/852x | | -5=3a=4 | | 1/2(8x-14)=21 | | 1/3(x-4)=1/2x+4 | | 2(4x+12)+4x=0 | | 9c=345c= | | 80+x=135x= | | 9y+-4(y+5)=36 | | 7k/11+9=86 | | 9.25y=-120.25 | | 8t-t-4=38 | | v^2+9=40 | | 4)61−5x−9=57 | | -7(7m-6)=-252 | | 261=218-w |